Surname

Centre Number

Other Names

4462/02

GCSE

S15-4462-02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

P.M. FRIDAY, 12 June 2015

1 hour

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	7	
2.	7	
3.	4	
4.	6	
5.	6	
6.	6	
7.	6	
8.	5	
9.	7	
10.	6	
Total	60	

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

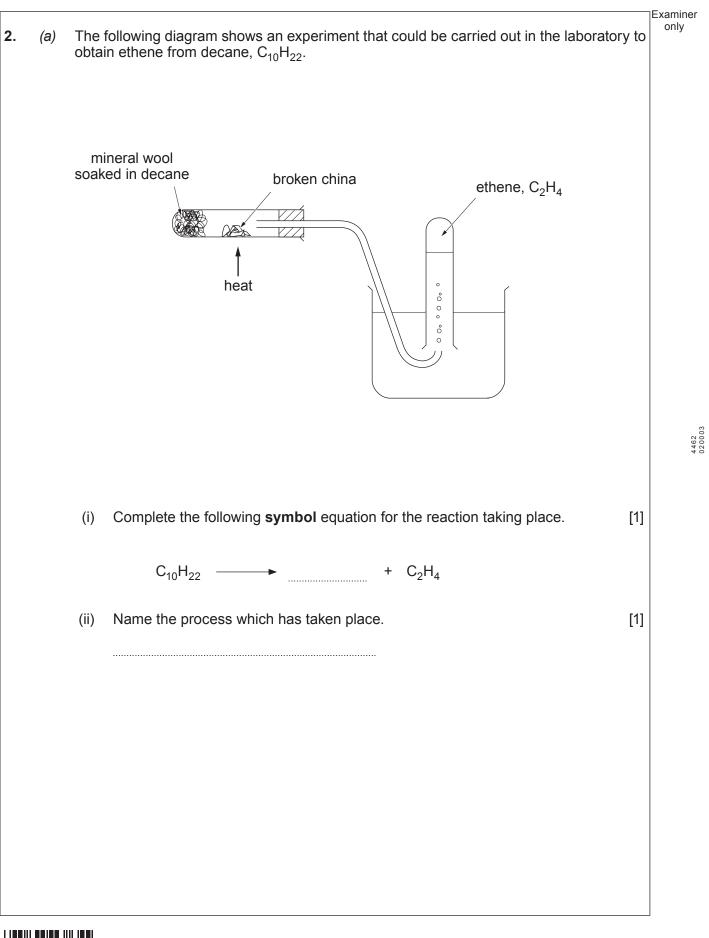
Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

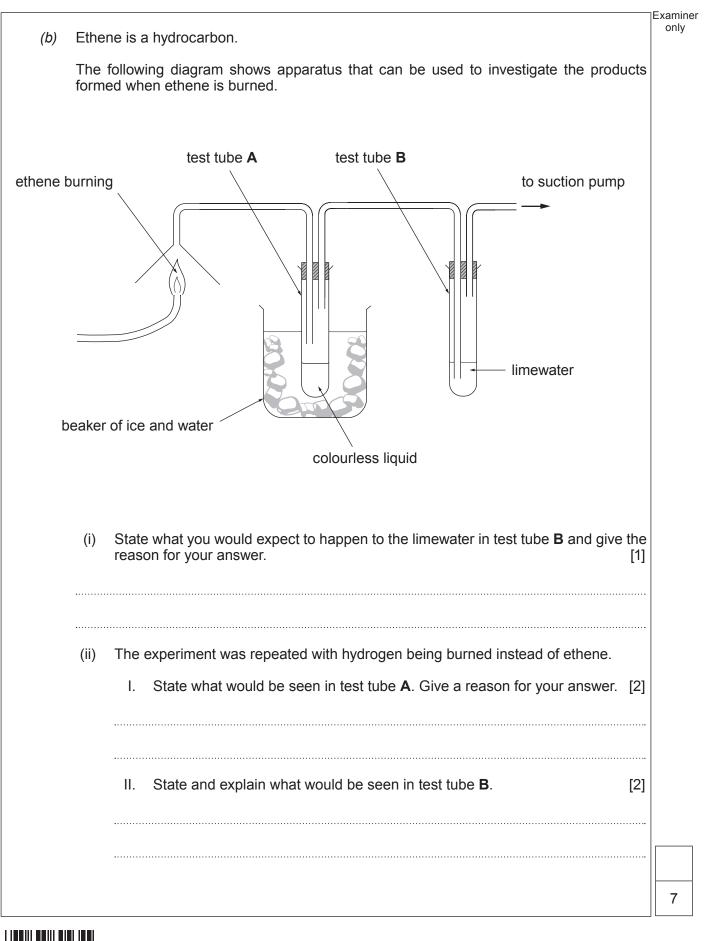
INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to questions **4** and **10**.


The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Element	Melting point (°C)	Boiling point (°C)	Electrical conductivity	7
A	113	445	poor	-
B	-39	357	good	_
C	3550	4828	poor	_
D	-101	-35	poor	_
E	1540	2750	good	
(a) Give the	letter of the element, A-E	E, that is a liquid at 20°C	. Explain your choice.	[3]
	letter of the element, A-E			[3]
(b) State wh		and explain your choice		
(b) State wh	hich element could be iron	and explain your choice		[3]



04

Examiner only

3. The table below gives information about the concentration of ions in drinking water from four different locations.

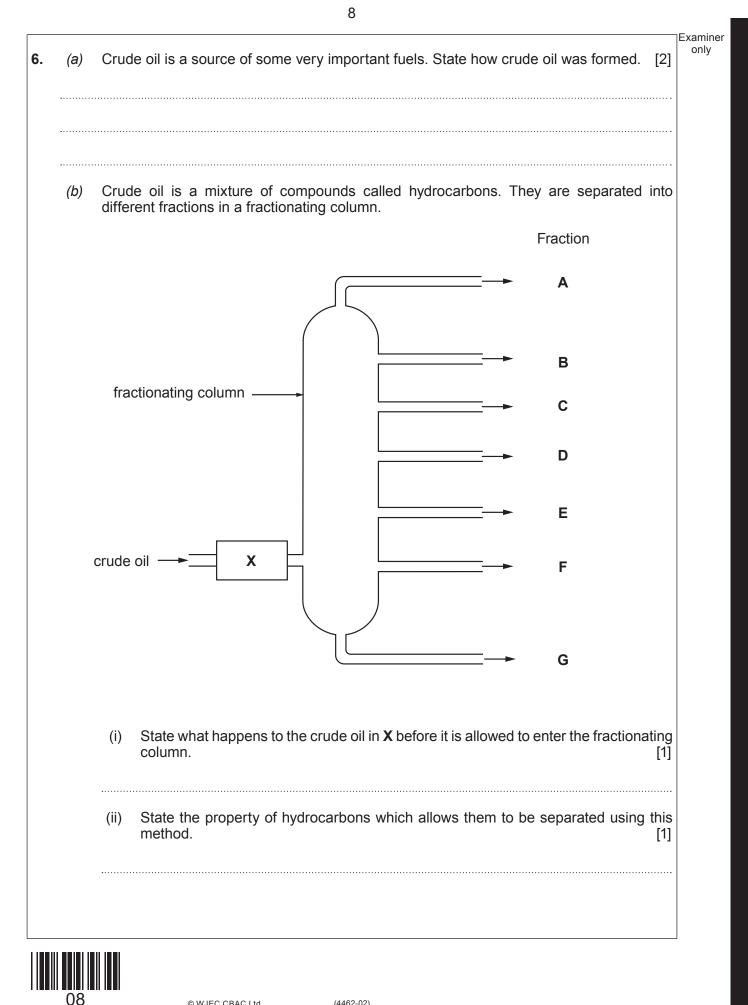
Leastion	Concentration of ions (mol/m ³ of water)						
Location	Na⁺	NH_4^+	Mg ²⁺	F ⁻	SO4 ²⁻	NO ₃ -	
А	3.4	2.1	2.0	2.1	2.5	2.3	
В	0.2	0.6	2.7	4.4	0.0	0.1	
С	0.0	0.3	0.4	0.4	0.2	0.0	
D	0.1	0.4	0.0	0.0	0.4	0.2	

(a) (i) Sodium sulfate can be formed from the ions found in water at location **A**. [1]

Write the formula of sodium sulfate.

- (ii) Suggest the names of **two** compounds that could be formed from the ions present in the water at location **C**. [1]
 - Compound 1
- (b) State the location where you would expect to find the least amount of tooth decay. Give a reason for your choice.

4462 020005


4

[2]

Fossil fuels such as coal release sulfur dioxide into the atmosphere when burned. This causes acid rain. Describe how acid rain is formed and its effects on the environment. [6 QWC]	Exami only
	6
 06 © WJEC CBAC Ltd. (4462-02)	

5.	Сорр	per(II) sulfate was made by reacting copper(II) carbonate with an acid.		Examin only	
	(a)	Give the name of the acid used.	[1]		
	(b)	The first stage of the preparation is the addition of excess copper(II) carbonate to acid. Give two observations that show a reaction is taking place.	the [2]		
	(c)	Describe how you would prepare copper(II) sulfate crystals from the mixture in part (k	b). [2]		
	(d)	A different salt can be made by reacting copper(II) oxide with dilute hydrochloric at Complete the word equation for the reaction that takes place.	cid.		4462 020007
С	opper(oxide				-
				6	_

Examiner only

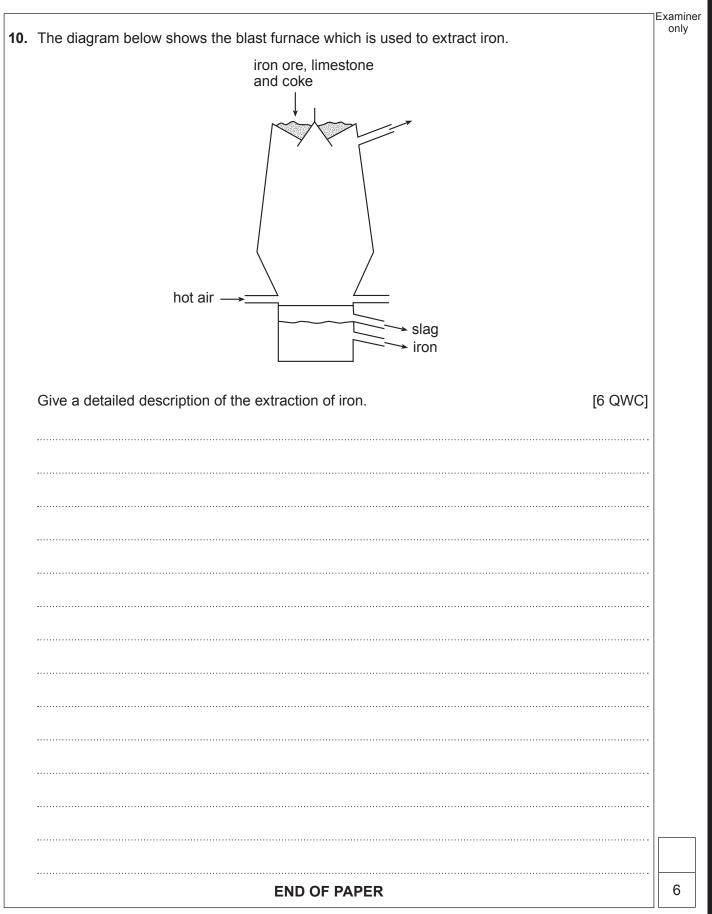
[2]


4462 020009

6

A similar process can also be used to separate gases from air. (C) The table below shows the boiling points of three gases that can be obtained from air. Gas Boiling point (°C) -186 argon -196 nitrogen -182 oxygen To separate the gases, air is compressed and cooled to become liquid air. The liquid air is then allowed to warm up slowly. State which of the three gases boils first when liquid air warms up and give the reason for your answer.

10


	(iii) 	State what happens to the amount of carbon dioxide inside the apparatus the experiment. Give the reason for your answer.	during [2]
(b)		per(II) oxide can be formed by heating copper(II) nitrate.	[1]
		$Cu(NO_3)_2 \longrightarrow CuO + NO_2 + O_2$	-

							Evominor
8.	(a)	Comp	lete the following table	9.		[3]	Examiner only
			Positive ion	Negative ion	Formula		
			Na ⁺	Br ⁻	NaBr		
			Ba ²⁺	OH⁻			
				SO4 ²⁻	Fe ₂ (SO ₄) ₃		
			K+		K ₂ HPO ₄		
	(b)	Explai sodiur	in how a sodium ator n bromide.	n and a bromine ato	m form ions when th	ey react to make [2]	
	·····						
							5
	12			(4462.02)			
	14		© WJEC CBAC Ltd.	(4462-02)			I

9.	(a)	Alun	ninium can be extracted by the electrolysis of molten aluminium oxide.	Examine only
		(i)	State what is added to aluminium oxide to reduce its melting point. [1]	
		(ii)	Aluminium metal is released at the cathode according to the following electrode equation. $AI^{3+} + 3e^{-} \longrightarrow AI$	9
			Balance the electrode equation for the reaction that takes place at the anode. [1] $O^{2-} - e^{-} O_{2}$	
	(b)	Lead	d can be produced by the electrolysis of molten lead(II) bromide, PbBr ₂ .	
		(i)	Complete the balanced electrode equation for the reaction that takes place at the cathode. [2]	
			+ → Pb	
		(ii)	Explain the formation of bromine during the electrolysis of molten lead(II) bromide. [3]	
	.			
				7

© WJEC CBAC Ltd.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
		J

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

POSITIV	E IONS	NEGATIVE IONS						
Name	Formula	Name	Formula					
Aluminium	Al ³⁺	Bromide	Br [–]					
Ammonium	NH4 ⁺	Carbonate	CO ₃ ²⁻					
Barium	Ba ²⁺	Chloride	CI					
Calcium	Ca ²⁺	Fluoride	F ⁻					
Copper(II)	Cu ²⁺	Hydroxide	OH⁻					
Hydrogen	H⁺	lodide	I_					
Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻					
lron(III)	Fe ³⁺	Oxide	0 ²⁻					
Lithium	Li ⁺	Sulfate	SO4 ²⁻					
Magnesium	Mg ²⁺							
Nickel	Ni ²⁺							
Potassium	K ⁺							
Silver	Ag ⁺							
Sodium	Na ⁺							
Zinc	Zn ²⁺							

	7 0	² ⁴ He	Helium	¹⁹ F ²⁰ Ne ¹⁰	Fluorine Neon	35 CI 40 Ar	Chlorine Argon	⁸⁰ Br ⁸⁴ Kr ³⁵ Kr	Bromine Krypton	¹²⁷ I ¹³¹ Xe ⁵³	lodine Xenon	²¹⁰ At ²²² Rn ⁸⁶ Rn	Astatine Radon						
TS	9			¹⁶ 0 ¹⁹ 9	Oxygen Fluc	³² S ³⁵ ¹⁶	Sulfur Chl	⁷⁹ / ₃₄ Se ⁸⁰ / ₃₅	Selenium Broi	¹²⁸ Te ¹²	Tellurium loc	²¹⁰ PO ²¹⁰ 85	Polonium Ast						
	S			14 N	Nitrogen	³¹ P	Phosphorus 8	75 AS	Arsenic Se	¹²² Sb ¹³	Antimony Te	²⁰⁹ Bi ²	Bismuth Po						
	4	4		¹² C	Carbon	²⁸ Si	Silicon	⁷³ Ge	Germanium	¹¹⁹ Sn	Tin	²⁰⁷ Pb	Lead						
	ო			11 B	Boron	²⁷ AI	Aluminium	70 Ga	Gallium	¹¹⁵ In	Indium	204 TI 81	Thallium					lodi	
DIC TABLE OF ELEMENTS								⁶⁵ Zn 30	Zinc	¹¹² Cd	Cadmium	²⁰¹ Hg	Mercury					Element Symbol	
ELE								64 Cu 29 Cu	Copper	¹⁰⁸ Ag	Silver	¹⁹⁷ Au	Gold					– Elem	
E OF								⁵⁹ Ni ²⁸ Ni	Nickel	¹⁰⁶ Pd	Palladium	¹⁹⁵ Pt	Platinum			ſ		↓ ★ ×	Name
ABLI		T.	Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ Rh	Rhodium	192 r 77	Iridium				<		Na
IC T	roup							⁵⁶ Fe	Iron	¹⁰¹ Ru	Ruthenium	¹⁹⁰ OS	Osmium				ار ت	Der —	
PERIOD	Gro							⁵⁵ Mn	Manganese	⁹⁹ TC	Technetium	¹⁸⁶ Re	Rhenium				Mass number	Atomic number	
PE								52 Cr 24 Cr	Chromium	⁹⁶ Mo	Molybdenum	¹⁸⁴ W 74	Tungsten		Key:		Mas	Aton	
								51 V 23	Vanadium	⁹³ Nb	Niobium	¹⁸¹ Ta	Tantalum						
								⁴⁸ Ti ²²	Titanium	⁹¹ ₄₀ Zr	Zirconium	¹⁷⁹ Hf	Hafnium						
								⁴⁵ 21 SC	Scandium	⁸⁹ 39 Y	Yttrium	¹³⁹ La	Lanthanum	²²⁷ Ac	Actinium				
	2			⁹ Be	Beryllium	²⁴ ₁₂ Mg	Magnesium	⁴⁰ Ca	Calcium	⁸⁸ 38 Sr	Strontium	¹³⁷ Ba	Barium	²²⁶ Ra	Radium				
~		7 Li	Lithium	²³ Na	Sodium	³⁹ 7	Potassium	⁸⁶ Rb	Rubidium	¹³³ CS	Caesium	²²³ Fr ⁸⁷	Francium						
	20			© WJEC	C CBAC	Ltd.		(4462	2-02)										

20